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Abstract

This paper focuses on the boundary layer phenomenon arising in
the study of singularly perturbed differential equations. Our tools in-
clude the method of lower and upper solutions combined with analysis
of the integral equation associated with the class of nonlinear equa-
tions under consideration.
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1 Introduction

This paper is devoted to study the second-order semilinear singularly
perturbed differential equation

ǫy′′ + ky = f(t, y), t ∈ [a, b], k < 0 (1)

subject to the three–point boundary value conditions

y′ǫ(a) = 0, yǫ(b) = yǫ(c), a < c < b, (2)
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where ǫ is a small perturbation parameter (0 < ǫ << 1).
In the past few years, much attention has been paid to the study

of nonlocal boundary value problems, whose study for ordinary differ-
ential equations has been initiated by the work of Il’in and Moiseev
[11, 12].

In particular, existence of solutions for differential equation

y′′ + g(t)f(y(t)) = 0, 0 < t < 1

under one of the m-point boundary conditions

y′(0) = 0, y(1) =

m−2
∑

i=1

αiy(ηi), 0 < η1 < η2 < · · · < ηm−2 < 1

or

y(0) = 0, y(1) =
m−2
∑

i=1

αiy(ηi), 0 < η1 < η2 < · · · < ηm−2 < 1,

as an important subclass of nonlocal boundary conditions has been
thoroughly studied by Gupta et al., see, for example, [5, 6, 7, 8, 9].
Eloe and Gao [3] discussed the quasilinearization method for a three-
point semilinear boundary value problem which provides an iterative
scheme for approximating the solutions.

The subject of multi-point nonlocal boundary value problems for
singularly perturbed differential equations has been also addressed
by many authors, see e.g. [1, 2], and the references therein. For
example, Du et al. [1] have studied a third-order multi-point singularly
perturbed boundary value problem

ǫy′′′ + f(t, y, y′, y′′, ǫ) = 0, 0 ≤ t ≤ 1, 0 < ǫ << 1,

yǫ(0) = 0,

ay′ǫ(0) − by′′ǫ (0) +

n−2
∑

i=1

αiyǫ(ξi) = A,

cy′ǫ(1) + dy′′ǫ (1) +

n−2
∑

i=1

βiyǫ(ηi) = B,

where 0 < ξ1 < ξ2 < · · · < ξn−2 < 1 and 0 < η1 < η2 < · · · <

ηn−2 < 1, applying differential inequalities technique (method of lower
and upper solutions) and Leray–Schauder degree theory. This paper
contains a large amount of material and can serve as an introduction
to some of principles and methods of singular perturbation theory, not
only for third-order nonlinear differential equations.
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Singular perturbation problems can also arise in heat transfer prob-
lem with large Peclet numbers [14], Navier-Stokes flows with large
Reynolds numbers, chemical reactor theory, aerodynamics, reaction-
diffusion processes, quantum mechanics, optimal control [15], for ex-
ample.

As far as we know, there is no paper related to the boundary
layer analysis for nonlinear multi-point nonlocal singularly perturbed
boundary value problems.

Let D(u) denotes the set

{(t, y)| a ≤ t ≤ b, |y − u(t)| ≤ d(t)} ,

where d(t) is the positive continuous function on the interval [a, b] such
that

d(t) =

{

δ for a ≤ t ≤ b − δ,

|u(b) − u(c)| + δ for b − δ
2 ≤ t ≤ b,

where δ is a small positive constant.
Recently in [16], we have shown that for every ǫ > 0 sufficiently

small (ǫ ∈ (0, ǫ0]) there is a unique solution yǫ of BVP (1), (2) such
that {(t, yǫ(t)) | a ≤ t ≤ b} ⊂ D(u) and yǫ converges uniformly to
the solution u of reduced problem ku = f(t, u) for ǫ → 0+ on every
compact subset K ⊂ [a, b). Consequently, yǫ(b) = yǫ(c) → u(c) for
ǫ → 0+.

In the present paper, we focus our attention on the detailed anal-
ysis of the behavior of the solutions yǫ for (1), (2) in the point t = b

when a small parameter ǫ tends to zero. We show that the solutions
yǫ of (1), (2) remain close to u on K with an arising fast transient of
yǫ to yǫ(b) (|y′ǫ(b)| → ∞ for u(b) 6= u(c) and ǫ → 0+), which is the
so-called boundary layer phenomenon ([4, 13]). Boundary layers are
formed due to the nonuniform convergence of the exact solution yǫ to
the solution u of reduced problem in the neighborhood of the right
end b.

We will assume that the following conditions are satisfied through-
out this paper:

(H1) The solution u of a reduced problem ku = f(t, u) is a C3 function
defined on the interval [a, b].

(H2) f(c, u(c)) 6= f(b, u(c))

It is instructive for the future to keep in mind that this assumption
implies that u(c) 6= u(b) and f (c, yǫ(c)) 6= f (b, yǫ(b)) for every suffi-
ciently small ǫ, say 0 < ǫ < ǫ0.
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(H3) f ∈ C1(D(u)) and there exists a positive constant w such that

∣

∣

∣

∣

∂f(t, y)

∂y

∣

∣

∣

∣

≤ w < −k for every (t, y) ∈ D(u).

Notation.

g1,ǫ(t) = k − ∂f(t,yǫ(t))
∂y

g2,ǫ(t) = ∂f(t,yǫ(t))
∂t

m = −k − w

γǫ(t) = 1
m
|ǫu′′′(t) + g1,ǫ(t)u

′(t) − g2,ǫ(t)| .

Obviously, γǫ(t) ≥ 0 and lim
ǫ→0+

γǫ(t) = 0 for t ∈ [a, b). Further,

lim
ǫ→0+

γǫ(b) 6= 0 for u′(b) 6= ∂f(b,u(c))
∂t

(

k − ∂f(b,u(c))
∂y

)

−1
. The equality

u(b) = u(c) implies lim
ǫ→0+

γǫ(b) = 0.

2 Boundary layer phenomenon at t = b

For an illustrative example we consider (1), (2) with f(t, y) = t2,

a = 0, b = 2, c = 1 and its solution

yǫ(t) =−3

k
· e

2
q

−
k

ǫ

e
4

q

−
k

ǫ − e
3

q

−
k

ǫ − e

q

−
k

ǫ + 1

· e
q

−
k

ǫ
t

− 3

k
· e

2
q

−
k

ǫ

e
4

q

−
k

ǫ − e
3

q

−
k

ǫ − e

q

−
k

ǫ + 1

· e−
q

−
k

ǫ
t
+

t2

k
− 2ǫ

k2
.

Hence we have

1. lim
ǫ→0+

yǫ (t0) = f(t0)
k

= u (t0) for every t0 ∈ [0, 2)

2. lim
ǫ→0+

yǫ (2) = f(1)
k

= u (1)

3. lim
ǫ→0+

|y′ǫ (2)| = ∞ (a boundary layer phenomenon).

We precede the main result of this article with the following im-
portant lemmas.

Lemma 2.1 Let the assumptions (H1) and (H3) hold. Let [t, yǫ(t)] ⊂
D(u) for ǫ ∈ (0, ǫ0] and t ∈ [a, b] where yǫ is the solution of (1), (2).
Then we have on [a, b] the estimate

∣

∣y′ǫ(t) − u′(t)
∣

∣ ≤ vL,ǫ(t) + vR,ǫ(t) + γǫ,max (3)
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where

vL,ǫ(t) =
∣

∣u′(a)
∣

∣ e
√

m

ǫ
(a−t)

vR,ǫ(t) =
∣

∣u′(b) − y′ǫ(b)
∣

∣ e
√

m

ǫ
(t−b)

γǫ,max = max {γǫ(t); t ∈ [a, b]} .

Proof. Differentiating (1) with respect to the variable t we obtain for
y′ǫ, ǫ ∈ (0, ǫ0] linear differential equation

ǫz′′ + g1,ǫ(t)z = g2,ǫ(t) (4)

with the Dirichlet boundary condition

zǫ(a) = 0, zǫ(b) = y′ǫ(b). (5)

First we show that zǫ = y′ǫ is an unique solution of Dirichlet BVP (4),
(5) for yǫ, ǫ ∈ (0, ǫ0] . Assume to the contrary, that Z1, Z2 are two
solutions of (4), (5) for ǫ ∈ (0, ǫ0] fixed. Denote Z(t) = Z1(t) − Z2(t).
Then Z is a solution of the homogeneous Dirichlet problem

ǫz′′ + g1,ǫ(t)z = 0,

zǫ(a) = 0, zǫ(b) = 0.

Thus there is t0 ∈ (a, b) such that Z (t0) 6= 0, Z ′ (t0) = 0 and
Z (t0)Z ′′ (t0) ≤ 0 which contradicts to the assumption (H3). To prove
Lemma 2.1 it is sufficient to show that for every yǫ, ǫ ∈ (0, ǫ0] there is
a solution zǫ of (4), (5) satisfying (3). We apply the method of lower
and upper solutions ([10]). As usual, a function αǫ is called a lower
solution of the Dirichlet BVP (4), (5) if αǫ ∈ C2([a, b]) and satisfies

ǫα′′

ǫ (t) + g1,ǫ(t)αǫ ≥ g2,ǫ(t) (6)

αǫ(a) ≤ 0, αǫ(b) ≤ y′ǫ(b).

An upper solution βǫ ∈ C2([a, b]) of the problem (4), (5) is defined
similarly by reversing the inequalities. If αǫ ≤ βǫ on [a, b] then there
exists a solution zǫ with αǫ ≤ zǫ ≤ βǫ on [a, b].

Define
αǫ(t) = u′(t) − vL,ǫ(t) − vR,ǫ(t) − γǫ,max

and
βǫ(t) = u′(t) + vL,ǫ(t) + vR,ǫ(t) + γǫ,max.

It is easy to check that αǫ(a) ≤ 0 ≤ βǫ(a), αǫ(b) ≤ y′ǫ(b) ≤ βǫ(b) and
αǫ(t) ≤ βǫ(t) for t ∈ [a, b]. Now we show that the inequality (6) holds.
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For βǫ we proceed analogously.

ǫα′′

ǫ (t) + g1,ǫ(t)αǫ(t) − g2,ǫ(t)

= ǫu′′′(t) − ǫv′′L,ǫ(t) − ǫv′′R,ǫ(t)

+ g1,ǫ(t)
(

u′(t) − vL,ǫ(t) − vR,ǫ(t) − γǫ,max

)

− g2,ǫ(t)

≥ ǫu′′′(t) − ǫv′′L,ǫ(t) − ǫv′′R,ǫ(t)

+ g1,ǫ(t)u
′(t) + mvL,ǫ(t) + mvR,ǫ(t) + mγǫ,max − g2,ǫ(t)

= ǫu′′′(t) + g1,ǫ(t)u
′(t) − g2,ǫ(t) + mγǫ,max ≥ 0.

The Lemma 2.1 is proven. �

Lemma 2.2 Let the assumptions (H1) and (H3) hold. Then the set

{

ǫ
∣

∣y′ǫ(b)
∣

∣ ; ǫ ∈ (0, ǫ0]
}

is bounded.

Proof. By Lagrange’s Theorem and from Diff. Eq. (1) we obtain

∣

∣y′ǫ(b) − y′ǫ(a)
∣

∣=
∣

∣y′′ǫ (τǫ)
∣

∣ (b − a) =
1

ǫ
|f (τǫ, yǫ(τǫ)) − kyǫ(τǫ)| (b − a)

≤ C∗

δ

ǫ
(b − a)

where τǫ ∈ (a, b) and C∗

δ = max {|f(t, y) − ky|; (t, y) ∈ D(u)} .

Hence ǫ |y′ǫ(b)| ≤ C∗

δ (b − a) for ǫ ∈ (0, ǫ0] . �

3 Main result

Our main result is the following.

Theorem 3.1 Under the assumptions (H1)-(H3) the problem (1), (2)
has for every ǫ, ǫ ∈ (0, ǫ0] the unique solution yǫ in D(u) which con-
verges uniformly to the solution u of reduced problem for ǫ → 0+ on
an arbitrary compact subset K of [a, b) and the set

{∣

∣y′ǫ(t)
∣

∣ ; t ∈ [a, b], ǫ ∈ (0, ǫ0]
}

is unbounded.
More precisely,

∣

∣y′ǫ(b)
∣

∣ = O

(

1√
−kǫ

)

i. e.
∣

∣y′ǫ(b)
∣

∣→ ∞ for ǫ → 0+. (7)
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Proof. The existence, uniqueness in D(u) and asymptotic be-
havior of the solutions for (1), (2) on the compact subset K ⊂ [a, b)
has been proven in [16]. It remains to prove (7), a boundary layer
phenomenon at t = b.

Assume to the contrary that the set
{
∣

∣y′ǫ(t)
∣

∣ ; t ∈ [a, b], ǫ ∈ (0, ǫ0]
}

is bounded. Consequently,
∣

∣

∣

∣

df (t, yǫ(t))

dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∂f (t, yǫ(t))

∂t
+

∂f (t, yǫ(t))

∂y
y′ǫ

∣

∣

∣

∣

≤ C̃δ, (8)

on [a, b], C̃δ > 0 is constant. The problem (1), (2) is equivalent to the
nonlinear integral equation

yǫ(t) =
I

Λ
e

q

−
k

ǫ
(t−a)

+
I

Λ
e

q

−
k

ǫ
(a−t)

+

t
∫

a

e

q

−
k

ǫ
(t−s) − e

q

−
k

ǫ
(s−t)

2
√

−k
ǫ

· f (s, yǫ(s))

ǫ
ds, (9)

where

I =

c
∫

a

e

q

−
k

ǫ
(c−s) − e

q

−
k

ǫ
(s−c)

2
√

−k
ǫ

· f (s, yǫ(s))

ǫ
ds

−
b
∫

a

e

q

−
k

ǫ
(b−s) − e

q

−
k

ǫ
(s−b)

2
√

−k
ǫ

· f (s, yǫ(s))

ǫ
ds,

Λ = e

q

−
k

ǫ
(b−a)

+ e

q

−
k

ǫ
(a−b) − e

q

−
k

ǫ
(c−a) − e

q

−
k

ǫ
(a−c)

.

Differentiating the integral equation (9) with respect to the variable
t we obtain

y′ǫ(t) =
I

√

−k
ǫ

Λ
e

q

−
k

ǫ
(t−a) −

I

√

−k
ǫ

Λ
e

q

−
k

ǫ
(a−t)

+

t
∫

a

e

q

−
k

ǫ
(t−s)

+ e

q

−
k

ǫ
(s−t)

2
· f (s, yǫ(s))

ǫ
ds.

Hence

y′ǫ(b) =
I

√

−k
ǫ

Λ

(

e

q

−
k

ǫ
(b−a) − e

q

−
k

ǫ
(a−b)

)

+
1

2

b
∫

a

(

e

q

−
k

ǫ
(b−s)

+ e

q

−
k

ǫ
(s−b)

)

f (s, yǫ(s))

ǫ
ds. (10)
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Integrating all integrals in (10) by parts and after little algebraic
arrangement we obtain

y′ǫ(b) =

√

−k
ǫ

k

[

(f (c, yǫ(c)) − f (b, yǫ(b)))σǫ

+
σǫ

2

( b
∫

a

(

e

q

−
k

ǫ
(b−s)

+ e

q

−
k

ǫ
(s−b)

)

df (s, yǫ(s))

ds
ds

−
c
∫

a

(

e

q

−
k

ǫ
(c−s)

+ e

q

−
k

ǫ
(s−c)

)

df (s, yǫ(s))

ds
ds

)

+
1

2

b
∫

a

(

−e

q

−
k

ǫ
(b−s)

+ e

q

−
k

ǫ
(s−b)

)

df (s, yǫ(s))

ds
ds

]

where

σǫ =
e

q

−
k

ǫ
(b−a) − e

q

−
k

ǫ
(a−b)

Λ
→ 1+ for ǫ → 0+. (11)

Taking into consideration (8), the integrals

b
∫

a

e

q

−
k

ǫ
(s−b) df (s, yǫ(s))

ds
ds,

c
∫

a

e

q

−
k

ǫ
(s−c) df (s, yǫ(s))

ds
ds

are O (
√

ǫ) by the mean value theorem for integrals.
Thus we have

y′ǫ(b) =

√

−k
ǫ

k

[

(f (c, yǫ(c)) − f (b, yǫ(b)))σǫ

+
1

2
(σǫ − 1)

b
∫

a

e

q

−
k

ǫ
(b−s) df (s, yǫ(s))

ds
ds

− 1

2
σǫ

c
∫

a

e

q

−
k

ǫ
(c−s) df (s, yǫ(s))

ds
ds + O

(√
ǫ
)

]

. (12)

From (11) we can write

σǫ − 1 = e

q

−
k

ǫ
(c−b)

ωǫ → 0+ for ǫ → 0+

where

ωǫ =
1

Λ

(

e

q

−
k

ǫ
(b−a)

+ e

q

−
k

ǫ
(a+b−2c) − 2e

q

−
k

ǫ
(a−c)

)

→ 1+ for ǫ → 0+.
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Thus from (12) we have

y′ǫ(b) =
1√
−kǫ

[

(f (c, yǫ(c)) − f (b, yǫ(b)))σǫ

+
1

2
(ωǫ − σǫ)

c
∫

a

e

q

−
k

ǫ
(c−s) df (s, yǫ(s))

ds
ds

+
1

2
ωǫ

b
∫

c

e

q

−
k

ǫ
(c−s) df (s, yǫ(s))

ds
ds + O

(√
ǫ
)

]

.

The integral
b
∫

c

e

q

−
k

ǫ
(c−s) df (s, yǫ(s))

ds
ds

is O (
√

ǫ) by the analogous argument as above and

c
∫

a

e

q

−
k

ǫ
(c−s)

∣

∣

∣

∣

df (s, yǫ(s))

ds

∣

∣

∣

∣

ds ≤ (c − a)C̃δe

q

−
k

ǫ
(c−a)

. (13)

Using (13), we have

∣

∣

∣

∣

∣

∣

1

2
(ωǫ − σǫ)

c
∫

a

e

q

−
k

ǫ
(c−s) df (s, yǫ(s))

ds
ds

∣

∣

∣

∣

∣

∣

≤ 1

2
(ωǫ − σǫ)(c − a)C̃δe

q

−
k

ǫ
(c−a)

=
1

2
(c − a)C̃δ

1

Λ

(

e

q

−
k

ǫ

(b−c)
2 − e

q

−
k

ǫ

(c−b)
2

)2

= O

(

e

q

−
k

ǫ
(a−c)

)

.

Hence

y′ǫ(b) =
1√
−kǫ

[

(f (c, yǫ(c)) − f (b, yǫ(b)))σǫ + O
(√

ǫ
)

]

(14)

which gives a contradiction. Combining Lemma 2.2 and (3) we obtain
the uniform boundedness of y′ǫ on every compact set K ⊂ [a, b) and
ǫ ∈ (0, ǫ0] . The proof of Theorem 3.1 is complete. �

Remark 3.2 As we can see from (14) the assumption (H2) is essen-
tial for an appearance the boundary layer phenomenon for singularly
perturbed system (1), (2) at the point t = b.
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